姓名:张金宝
职称:教授,博士生导师
电话:0592-
传真:
邮箱:jinbao.zhang@xmu.edu.cn
个人简历
张金宝,物理化学专业博士,厦门大学材料学院材料科学与工程专业教授,博士生导师。福建省闽江学者特聘教授、福建省海外高层次引进人才。中南大学应用化学专业获得本科学位,瑞典乌普萨拉大学化学系获得博士学位,曾在法国巴黎七大、瑞士洛桑联邦理工、西班牙ICN2研究所做访问学者。分别在瑞典乌普萨拉大学化学系和澳大利亚蒙纳什大学材料系做博士后,在美国斯坦福大学材料系任Wallenberg项目研究员。
研究领域
长期致力于开发新一代太阳能电池材料以及光伏器件物理方面的研究,包含设计新型光电材料、制备高效器件、表征电子动力学的一体化研究。内容涉及:
1、发展新型电化学方法可控合成导电聚合物,并用于高效固态染料敏化太阳能电池。
2、新型、低成本、高效的有机半导体空穴传输材料的设计、开发、特性表征以及在光电器件中的应用。
3、太阳能电池器件中界面的功能化处理、化学修饰以及电子动力学控制。
4、低成本喷涂技术用于大面积功能材料薄膜的制备。
研究方向
(1)高性能有机和无机纳米光电材料的设计与开发:彩色、半透明纳米介孔型固态染料敏化太阳能电池中新型染料、聚合物空穴传输材料、界面载流子传输动力学、光电化学聚合方法等方向的研究。
(2)开发低成本、高效率、高稳定性有机空穴传输材料:调控分子结构、研究材料构效关系、无掺杂剂空穴传输材料、界面复合机制研究。
(3) 大面积、柔性、半透明薄膜太阳能电池:有机无机薄膜喷涂工艺、大面积钙钛矿薄膜、太阳能电池模件制备。
主要科研成果
在国际主流期刊,Chem, Advanced Materials, Advanced Energy Materials, Energy Environmental Science, ACS Nano, Nano Energy等发表论文近50篇,SCI引用2000多次,含多篇期刊封面和ESI高被引论文,受邀撰写英文学术专著部分章节。曾任美国斯坦福大学Knut and Alice Wallenberg项目研究员, 曾任清华大学节能与安全国家重点实验室的客座研究员(兼职), 目前任中国材料进展青年编委,PLOS ONE期刊学术编辑、International Journal of Electrochemistry期刊编委、International Journal of Materials Science and Applications期刊编委、受邀为Frontiers in Energy Research的客座编辑,也受邀为斯坦福大学华人学者年会特邀报告嘉宾。曾受邀德国Academy出版社,澳大利亚化学学会及澳大利亚光伏会议等书籍/论文Editor。长期被邀请为核心期刊的审稿人,包括Advanced Energy Materials, ACS Nano, ACS Applied Materials Interfaces, Nano Energy, ChemSusChem,等。
课题组招聘需求
课题组长期招聘博士后、研究助理、助理教授、副教授。欢迎报考博士/硕士研究生(材料科学与工程/材料与化工),可随时发送简历至jinbao.zhang@xmu.edu.cn
招聘方向包括新型钙钛矿光电材料(单晶、量子点等)设计与合成,钙钛矿薄膜材料电学、光学、磁学、光电性质研究,钙钛矿太阳能电池/发光/传感器件,纳米材料/电化学/光电器件
薪酬待遇:
1. 海峡博士后:年薪可达31万人民币,另有10万元科研补助,根据科研成果(科研项目、论文、专利等)有额外奖励。
2. 普通博士后:年薪16-25万,根据科研成果(科研项目、论文、专利等)有额外奖励。
3. 福利:为博士后缴交社会保险和公积金。提供博士后公寓(海景房)或租房补贴。博士后子女按学校教职工子女同等待遇办理入园。博士后在站期间,可申请特任副研究员学术头衔。特别优秀者,可申报厦门大学南强青年拔尖人才计划,给予特任研究员。在站期间根据需要赴美国斯坦福大学、澳大利亚蒙纳什大学和瑞典乌普萨拉大学交流访学。学校积极选聘优秀博士后留校任职,聘任南强青年拔尖人才。
具体招聘办法及待遇政策可参照:https://postdoctor.xmu.edu.cn/2019/0114/c7624a361551/page.htm
主要代表学术论著与论文
1) Recent Advances in Organic Hole Transporting Materials for Perovskite Solar Cells, Solar RLL, 2020, 4, 2000461
2) Open-Air Plasma-Deposited Multilayer Thin-Film Moisture Barriers, ACS Applied Materials & Interfaces 12 (23), 26405-26412, 2020
3) Perspectives on intrinsic toughening strategies and passivation of perovskite films with organic additives, Solar Energy Materials and Solar Cells 209, 110433, 2020.
4) Rapid Aqueous Spray Fabrication of Robust NiO: A Simple and Scalable Platform for Efficient Perovskite Solar Cells, Advanced Energy Materials, 2019, just accepted
5) Electrochemically Polymerized Poly (3, 4-phenylenedioxythiophene) as Efficient and Transparent Counter Electrode for Dye Sensitized Solar Cells, Electrochimica Acta, 2019, 300, 482
6) Chemical Dopants Engineering in Hole Transport Layer for Efficient Perovskite Solar Cells: A New Insight into the Interfacial Recombination, ACS Nano, 2018, 12, 10452
7) 4-tert-Butylpyridine Free Hole Transport Materials for Efficient Perovskite Solar Cells: A New Strategy to Enhance the Environmental and Thermal Stability, ACS Energy Letters, 2018, 3, 1677
8) Synthesis of spiro[dibenzo[c,h]xanthene-7,9' fluorene]- based dopant-free hole-transport materials for perovskite solar cells, 2018, Chem. Comm. 2018, 54, 9571-9574 (Journal Cover)
9) The Importance of Pendant Groups on Triphenylamine-based Hole Transport Materials for obtaining Perovskite Solar Cells with over 20% Efficiency, Advanced Energy Materials, 2018, 8, 1701209 (highly cited paper)
10) Al2O3 Underlayer Prepared by Atomic Layer Deposition for Efficient Perovskite Solar Cells, Chemsuschem, DOI: 10.1002/cssc.201701160
11) The Importance of Pendant Groups on Triphenylamine-based Hole Transport Materials for obtaining Perovskite Solar Cells with over 20% Efficiency, Advanced Energy Materials, DOI: 10.1002/aenm.201701209
12) Incorporation of counter ions in the molecules: New strategy to develop dopant free hole transport material for perovskite solar cells, 2016, Advanced Energy Materials, DOI: aenm.201602736,
13) Tailor-making of Low-cost Spiro[fluorene-9,9′-xanthene] (SFX)-based 3D Oligomers towards 20.8% Efficiency Perovskite Solar Cells, Chem, 2, 676-687
14) 4‐Tert‐butylpyridine Free Organic Hole Transporting Materials for Stable and Efficient Planar Perovskite Solar Cells, Advanced Energy Materials, 2017, 10.1002/aenm.201700683.
15) High luminance of hybrid perovskite light-emitting diodes: perovskite nanocrystals with organic-inorganic mixed cations, 2016, Advanced Materials, 2016, 29, 1606405
16) The Role of 3D Molecular Structural Control in New Hole Transport Materials Outperforming Spiro -OMeTAD in Perovskite Solar Cells, Advanced Energy Materials, 2016, 1601062
17) A strategy to boost the efficiency for mixed-ion perovskite solar cells: Changing geometry of hole transporting materials. ACS Nano, 2016, 10, 6816–6825
18) Constructive Effects of Alkyl Chains: A Strategy to Design Simple and Non-Spiro Hole Transporting Materials for High-efficiency Mixed-Ion Perovskite Solar Cells. Advanced Energy Materials 2016, 1502536
19) Facile Synthesis of Hole Transport Materials for Highly Efficient Perovskite Solar Cells and Solid-State Dye-sensitized Solar Cell, Nano Energy, 2016, 26, 108-113
20) Efficient solid-state dye sensitized solar cells: the influence of dye molecular structures for the in-situ photoelectrochemically polymerized PEDOT as hole transporting material, Nano Energy, 2015, DOI: 10.1016/j.nanoen.2015.09.010
21) Blue-Coloured Solid-State Dye Sensitized Solar Cells: Enhanced Charge Collection By Using Photo-electrochemically Generated Conducting Polymer Hole Conductor, ChemPhysChem, DOI: 10.1002/cphc.201600064
22) New approach for preparation of efficient solid state dye sensitized solar cells by photo-electrochemical polymerization in aqueous solution, Journal of Physical Chemistry Letters, 2014, 4 (23), 4026–4031.
23) Poly(3,4-ethylenedioxythiophene) Hole-Transporting Material Generated by Photoelectrochemical Polymerization in Aqueous and Organic Medium for All-Solid-State Dye-Sensitized Solar Cells, Journal of Physical Chemistry C, 2014, 118 (30), 16591–16601
24) Solid-State Dye-Sensitized Solar Cells Based on Poly (3,4-ethylenedioxypyrrole) and Metal-Free Organic Dyes, ChemPhysChem, 2014, 15, 1043 – 1047
25) Photoelectrochemical Polymerization of EDOT for Solid State Dye Sensitized Solar Cells: Role of Dye and Solvent, Electrochimica Acta, DOI:10.1016/j.electacta.2015.01.077
26) Matrix-Assisted Laser Desorption/Ionization Mass Spectrometric Analysis of Poly(3,4-ethylenedioxythiophene) in Solid-State Dye-Sensitized Solar Cells: Comparison of in-situ Photoelectrochemical Polymerization in Micellar and Organic Media, Analytical Chemistry, 2015, DOI:10.1021/ac504851f
27) The effect of mesoporous particle size on the performance of solid state dye sensitized solar cells based on photoelectrochemically polymerized PEDOT as hole conductor. Electrochimica Acta, 2016, 210, 21-30
28) High-efficiency dye-sensitized solar cells with molecular copper phenanthroline as solid hole conductor, Energy Environmental Science, 2015, DOI:10.1039/C5EE01204J
29) Ambient air processed mixed-ion perovskite for high efficiency solar cells, 2016, Journal of Material Chemistry A, DOI: 10.1039/C6TA06912F
30) Integrated Design of Organic Hole Transport Materials for Efficient Solid-State Dye-Sensitized Solar Cells. Advanced Energy Materials, 2014, DOI: 10.1002/aenm.201401185.
31) Carbazole-Based Hole-Transport Materials for Efficient Solid-State Dye-Sensitized Solar Cells and Perovskite Solar Cells, Advanced Materials 2014, DOI: 10.1002/adma.201402415
32) All-Inorganic Perovskite Nanocrystals for High-Efficiency Light Emitting Diodes: Dual-Phase CsPbBr3-CsPb2Br5 Composites, 2016, Advance Functional Materials, DOI: 10.1002/adfm.201600958
33) Highly efficient organic dye with fluorine substituent for solid-state Dye-Sensitized Solar Cells. 2016, Journal of Photochemistry and Photobiology A: Chemistry, doi:10.1016/j.jphotochem. 2016.05.015
34) Carbon nanotube film replacing silver in high-efficiency solid-state dye solar cells employing polymer hole conductor, Journal of solid-state electrochemistry, 2015, DOI:10.1007/s10008-015-2937-
35) Dye-sensitized Solar Cells: New Approaches with Organic Solid-state Hole Conductors, CHIMIA International Journal for Chemistry, 2015, DOI:10.2533/chimia
36) Codoping induced rhombus-shaped Co3O4 nanosheets as active electrode material for oxygen evolution, ACS Applied Materials & Interfaces, 2015, DOI: 10.1021/acsami.5b05149
37) The combination of a new organic D-π-A dye with different organic hole-transport materials for efficient solid state dye-sensitized solar cells, J. Mater. Chem. A 2014; DOI: 10.1039/C4TA05774K
38) New Covalently Linked Dye-Hole Transport Material for better charge transfer in Solid-State Dye Sensitized Solar Cells, Electrochimica Acta, 2018, 269
39) Design, synthesis and application of π-conjugated, non-spiro molecular alternatives as hole-transport materials for highly efficient dye-sensitized solar cells and perovskite solar cells, Journal of power sources, 2017, 344, 11
40) A Novel Blue Colored Organic Dye for Dye-Sensitized Solar Cells Achieving High Efficiency in Cobalt-based Electrolytes and by Co-sensitization. ACS Applied Material & Interfaces, 2016, 8, 32797
41) Synthesis and electrochemical properties of K-doped LiFePO4/C composite as cathode material for lithium-ion batteries, Journal of Solid State Electrochemistry, (2012) 16:767
42) Application of Nanoporous Perovskite La1-xCaxCoO3 in an Al-H2O2 Semi Fuel Cell, Acta Phys. Chim. Sin.2012, 28(2), 355-360
43) FElectrochemical Synthesis of Dimethyl Carbonate with Carbon Dioxide in 1-Butyl-3-Methylimidazoliumtetrafluoborate on Indium Electrode, Int. J. Electrochem. Sci., 7 (2012) 4381 – 4387
44) Electrocatalytic Activity of Nanoporous Perovskite La1-xCaxCoO3 Towards Hydrogen Peroxide Reduction in Alkaline Medium, Int. J. Electrochem. Sci., 7 (2012) 338 – 344
45) Effect of rapid quenching in magnetic field on the microstructures and electrochemical performances of AB5-type alloys, Advanced Materials Research, 512-515 (2012), 1589-1596